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A comparison is made of the velocity profiles obtained by semi- 
empirical methods of calculation and those from universal empirical 
relations. A method of simplifying the semiempirical calculation is 
proposed. 

Great success has recently been attained in the 
area of purely empirical calculation of the turbulent 
boundary layer. Statistical treatment of the experi- 
mental data has given a generalization of velocity pro- 
files in the boundary layer of equilibrium flows [3], 
and universal velocity profile shapes have been ob- 
tained in the inner and outer parts of the layer. There 
have been numerous attempts [4-7] to use these ideas 
to construct a method of calculating the integral char- 
acteristics of the boundary layer. 

It is therefore interesting to examine how far the 
results of the semi-empirical theory agree with uni- 
versal empirical relations. 

The semi-empirical methods assume a two-layer 
form of boundary layer. It is assumed that in the 
immediate vicinity of the wall, where turbulent fluc- 
tuations are damped, there is a laminar sublayer in 
which viscous friction has the greatest influence. The 
velocity profile in the laminar sublayer is determined 
by the Pohlhausen [1] method, and its thickness is 
found by dimensional analysis to be ~?l = 61/5 = a/Ri. 
The coefficient c~ is regarded as being a universal 
constant, equal to about 11.5. 

In the turbulent part of the layer the connection 
between the shear stress r and the transverse veloc- 
ity gradient is determined by the Prandtl "mixing 
length" formula r = pl 2 (Ou/by) 2. If the dependence of 
r and I on y is known, we may obtain the velocity pro- 
file in the turbulent part of the layer. The constant 
of integration may then be found from the condition 
that the velocity profile is continuous at the edge of 
the laminar sublayer or at the outer edge of the boun- 
dary layer. In the first case the velocity profile may 
be expressed in a form reminiscent of the law of the 
wall 
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If the cons tan t  of in tegra t ion  is d e t e r m i n e d  f rom 
one of the condi t ions  men t ioned  above,  then fu l f i l l -  
m e n t  of the second condit ion is only poss ib le  when 

the re  is a defini te  r e l a t i on  be tween the she a r  s t r e s s  at  
the wall  and the boundary  l a ye r  t h i cknes s ,  the so -  
ca l led  r e s i s t a n c e  law, 
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In o rde r  to de te rm ine  the spec i f i c  f o r m  of the ve-  
l o c i t y  prof i le  and the r e s i s t a n c e  law, we m u s t  a s s ign  

the in teg rand  funct ions  in  the foregoing formulas �9  
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Fig. i�9 Comparison of calculated (A-- 
from (I), B--from (2)) and experimen- 
tal (A--from the data of [3], B--from 
[4]) velocity profiles in the boundary 
layer on a flat plate: i, 3, 5, 7) with 
l = 0.4y; 2, 4, 6, 8) I/6 = 0.14-0.08 • 
x (i- ~)z- 0.06(1- ~?)4, 1,2) with 
T I T  0 : 1; 3, 4) T / r  o = 1 -- ~2; 5, 6) 
~rT/r0 = 1- -~7~;7)  ~ 0  = 1 +0 .5A~7- -  
-- (1 + 0.5A)rl 2, A = 20; 8 - ' r /T  o = 
= I + A v - -  ( l+A) r /2 ,  A = 2 0 ; a )  A/R 1= 
= 2 .84 �9 10-3; b) 2�9 59 �9 10-3; c) 5 .15 �9  
�9 1 0 - 3 ;  d) A / R  I = - - 0 . 2 0 .  i 0 -3 ;  e) A = 

= 0; f) expe r imen t .  

F r o m  N i ku r a dz e ' s  t e s t s  P r a n d t l  obtained the e m -  
p i r i c a l  dependence of "mixing length" on the d i m e n -  

s ion le s s  t r a n s v e r s e  coordina te  I / 6  = O. 14 - 0.08 • 
• (I - ~)~ - 0.06 (I - ~)4, which in mos t  ca ses  is r e -  
p laced ,  to s impl i fy  ca lcu la t ion ,  by the s i m p l e r  f o r m -  

ula  l /6  = O. 477. 
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Following the suggestion of Fedyaevskii [1], v/% 
or ~/T/r 0 is replaced by polynomials in which the co- 
efficients, which are  functions of the parameter  A, 
arc  determined from the boundary conditions at the 
wall and at the outer edge of the boundary layer. 
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Fig. 2. Comparison of calculated 
and experimental velocity pro- 
files in a boundary layer with 
pressure gradient: a) results of 
Doenhoff and Tetervin at Re = 
= (0.9-4.18)" 106; b) results of 
]3rebner; c) results of Schubauer 
and Klebanoff at Re = 27.7 �9 10G; 
full l ines--calculation at lg R** = 
= 3.4; dotted lines at lg 1R** = 6.2;  
1) with y/6** = 1/4; 2) 1/2; 3) 1; 
4) 2; 5) 3; 6) 4; 7) 5; 8) 6; 9) 7; 

10) s; 11) 9. 

Depending" on the number of conditions used, we 
may obtain polynomials of various degrees, with 
various accuracies of approximation to the shear 
stress distribution. 

Recently, other, stricter methods of finding the 
shear stress have been proposed and may be used 
when required for improved calculations. However, 
as indicated above, the characteristic properties of 
velocity profiles in the boundary layer may be re- 
vealed by serni-empirical methods, even for quite a 
rough approximation of the shear stress. 

This may be followed most easily in the example 
of the boundary layer on a fiat plate at constant pres- 
sure. Figure 1A compares experimental velocity pro- 
files near the wall, taken from [4], with calculations 
according to (i), using various approximating rela- 
tions to determine the "mixing length" and the shear 
stress profile. Also given are curves for a boundary 
layer with positive pressure gradient (A = 20). It is 
clear that lack of accuracy in the approximation for- 
mulas for shear stress and "mixing length" does not 
appreciably affect the velocity distribution in the 
inner part of the boundary layer. In all cases the 
calculated values prove to be extremely close to the 
logarithmic velocity profile. The positive pressure 
gradient in the external stream has practically no 
influence on the velocity profile in the inner part of 
the boundary layer. 

Thus, the comparison indicates that results ob- 
tained from semi-empirical methods are in good 
agreement with the empirical law of the wall. 

Figure I,B compares experimental data for a flat 
plate boundary layer [3] with calculated values from 
(2), using various dependences for T and I. The results 
show that the accuracy of approximation to the velocity 
in the outer part of the boundary layer depends appre- 
ciably on correct choice of the functions which deter- 
mine the shear stress profile and the "mixing length." 
The better these functions reflect the actual distri- 
bution of r and l, the closer are the calculated re- 
sults to the actual velocity profile. The best agree- 
ment between calculated and experimental charac- 
teristics is observed when we use a polynomial for 
r/T 0 and the first formula for I/6, and the worst agree- 
ment is obtained when we use a second-degree poly- 
nomial for ~ and the simplified formula for l/&. 

Values of l/6 found from the simplified formula are 
appreciably grea te r  than the actual values in the outer 
part  of the boundary layer,  causing the calculated 
velocity profiles to be fuller than the actual ones, and 
leading to reduction of the parameters  H = 6*/6**. By 
treating the curves shown in Fig. 1B, we may obtain 
the formula H = (1 - fiv'cf--~) -1, which relates H to 
the local friction coefficient cf.  Depending on the 
velocity profile fullness the coefficient fi in this for-  
mula will vary from 4.7 (curve 5) to 6.8 (curve 4); 
in the latter case the coefficient practically coincides 
with the empirical value given by Hams [I0]. 

It is clear from this that the cause of inaccuracy 
in H for some of the semi-empirical methods is the 
use of the simplified formula to determine the "mixing 
lenglh. " Using the more accurate formulas for T/T 0 
and I/6, values of H closer to experiment may be 
obtained. 

The closeness of approximation to T/T o and I/6 has 
very little influence on the resistance law. Thus, 
using the simplified formula for I/6, and for ~-TT0 a 
second-degree polynomial [2] (the corresponding 
velocity profile is shown in Fig. I,B, curve 5), we 
find that the resistance law for a plate may be repre- 
sented, over a wide range of Reynolds numbers (R** = 
= I0~-I07), by the power relation 

Qo/2 = 0.00652 R * ' -~  (a) 

which practically coincides with the analogous formula 
of Faulkner [i0], obtained by processing a large num- 
ber of experimental data. 

We shall pass on to examine profiles for boundary 
layers with longitudinal pressure gradient. 

By reducing a large number of measurements on 
straight airfoils, Doenhoff and Tetervin [7], and later 
Sehubauer and Klebanoff [8], obtained a one-param- 
eter family of universal velocity profiles u = u (H, 
y/6**) for boundary layers with longitudinal pressure 
gradient. 

Figure 2 compares the theoretical and experimental 
dependences of u = u (If) at y/6** = const. In calculating 
the velocities it was assumed that r/Ti) is ~etermined 
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Fig.  3. Dependence  of loca l  boun-  
d a r y  l a y e r  c h a r a c t e r i s t i c s  ( I - -F ;  
I I - -c f / c /  o ; III--H) on shape  s  
c a l cu l a t ed  on the b a s i s  of F e d y a e v s k i i ' s  
method:  1) with lg R** = 3 .4 ;  2) 3 .8 ;  
3) 4 .2;  4) 4 .6 ;  5) 5 .4;  6) 6 .2 ;  7) with 

F =  1 . 1 7 - 4 . 4 f .  
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Fig .  4. C o m p a r i s o n  of ca l cu l a t ed  c h a r a c t e r i s t i c s  
of a p lane  boundary  l a y e r  with the e x p e r i m e n t a l  
da ta  of d i f fe ren t  au thors  (a) us ;  b) cf0 ; d) 6**; 
e) It): 1) F o m i n a  and Buchinka (Re = 5.17 �9 10G); 
2) Doenhoff and T e t e r v i n  (Re = 2 . 6 4 .  10G); 
3) G r u s h v i t e t s  (Re = 0 .85 �9 10G); 4) Schubauer  
and Klebanoff  (Re = 27.7 �9 10G); dot ted  l i n e s -  
ca l cu l a t i on  acco rd ing  to [2]; so l id  l i n e s - a c c o r d -  

ing to (5). 
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[2] by a s e c o n d - d e g r e e  po lynomia l  (using two condi-  
t ions  at  the wal l  and one at the ou te r  edge of the l aye r ) ,  
and the "mixing length" by the s impl i f ied  f o r m u l a  l = 
= 0 : 4 y .  

O v e r  the whole range  of H, r ight  up to u n s e p a r a t e d  
condit ions of the boundary  l a y e r  (H = 1 . 7 5 - 1 . 8 ) ,  the 
ca lcu la ted  r e su l t s  a r e  in good a g r e e m e n t  with e x p e r i -  
m e n t a l  data. C o m p a r i s o n  of the ca lcu la ted  cu rves  
shows that  the influence of Reynolds n u m b e r  va r i a t ion  
on the above type of re la t ion  is smal l .  Some s y s t e m a t -  
ie divergence of the experimental results at different 

Reynolds numbers is observed only at small distance 
from the wall, and is quite well described by theory. 
It should be kept in mind, however, that the calculated 
values of H in the case examined differ somewhat from 
the experimental values. Therefore for the same value 
of II the theoretical and experimental velocity pro- 
files correspond to different values of shape factor A. 
It has been shown that the lack of agreement may he 
reduced by use of more accurate approximations for 
the shear stress profile and the "mixing length. " 

Finally, we shall examine one possible means of 
simplifying the semiempirical calculation of boundary 
layer characteristics in the presence of longitudinal 
pressure gradient. We shall introduce the shape fac- 

torf = (2 5**/cf) (~5~/ffS), where 5'* is the momentum 
thickness, cf0 is the local friction coefficient in zero- 
gradient flow, corresponding to the actual of 0. Ex~ 
pressing the momentum thickness in terms of the 
shape factor f with the aid of the fo~nula given above, 
we may transform the integral momentum relation 
for the axisymmetric boundary layer, in the case 
where the layer thickness is small compared with the 
radius r 0 of transverse curvature of the body, to the 
following form: 

d-~'df = u~-u~ F(f, R * * ) +  [u~_ --(m-}-1)r~-0~ ] t, 

F(f, R**) = (m + 1)ci/clo -- 
- - [2  + ( m  + 1)(1 § H)]f, 

m = - -  d lg (c/2)/d lg R**. (4) 

The function F ( f ,  R**) was calculated using 
Fedyaevskii's method [2]. It was assumed that the 
shear stress profile is determined by a second-degree 
polynomial for 4"~/T o , and the "mixing length" by the 
simplified formula I = 0.4 y. In the entire range of 
change of shape factorf the curves of function F (f, 
R**) constructed for ditlerent values of R** do not 
deviate from the straight line F = I. 17-4. 4f by more 
than 2-3%. Only near the points f =fs, corresponding 
to cf = 0, is a greater divergence, reaching 5%, 
observed between the values of function F and the lin- 
ear relation. It should be noted that the coefficients 
in the last equality are close to the corresponding co- 
efficients in Loitsyanskii's method [I0]. By replacing 
F in (4) by its linear approximation and performing 
the integration, we obtain a solution, using (3), of 
the in tegra l  m o m e n t u m  re la t ion  in the following fo rm:  

R * *  - -  
0 . 0 1 3 2  [ --2.4 --2.18 **I,16 

1,8s_~,o~ [ 153u~t rul R t 
ro u5 

x 

j ' 18 ]0 ,863 
--3.4 --2. 

+ 1.17Re _ u~ r o d~] , 

x t 

+ 

(5) 

where  the subsc r ip t  t denotes  va lues  of the c h a r a c -  
t e r i s t i c s  at  the point  x t f r o m  which ca lcu la t ion  of the 
turbulent boundary layer is begun (for instance, at 

the transition point). Putting Y0 = i in (5), we obtain 

a formula for calculating the characteristics of a 

plane boundary layer. 

The comparison that has been made for a large 

number of different problems has shown (Fig. 4) that 

the solution (5) is in good agreement with experimen- 

tal data and differs extremely little from the results 

obtained on the basis of the initial method of calcula- 

tion [2]. 
Thus ,  the data  p r e s e n t e d  show tha t  the conc lus ions  

which follow f r o m  s e m i e m p i r i c a l  r e l a t ions  fo r  ve loc -  
ity p ro f i l e s ,  but the methods  t h e m s e l v e s  m a y  be 
cons ide rab ly  s impl i f i ed  on the  computa t iona l  s ide ,  
and made as operational as the simplest empirical 
methods. Moreover, semiempirieal methods possess 
considerably greater flexibility. They are generalized 
in the case of gas flow with large velocities [ii] in 
the presence of heat transfer, permit adjustment for 
the influence of transverse body curvature [12], the 
presence of chemical reactions, etc. Therefore, 
further development and improvement of these methods 
is a matter of great interest. 

NOT AT I ON 

x, y-coordinate axes along and perpendicular to surface; u-pro- 
ject/on of velocity on x axis; re-radius of transverse body curvature; 
u- 6 = u6/V; ~ = x/V;u 0 = re/b; Re = Vb/v; V and b-characteristic 
velocity and linear dimension; p-kinematic viscosity; u, = TV~00/~- 

."dynamic" velocity; r0-shear stress at wall; cf = 2T0/Pu~-local 
friction coefficient; p-air density; 8-boundary layer thickness; 
6*-displacement thickness; 6**-momentum uhickness; H = 6~/6"*; 
R** = u66**/v; ~ = y/6; R I = u,6/~'; A = (6/To)dp/dx~ Z-"mixing 
length. " 
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